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Abstract. The Bern Simple Climate Model (BernSCM) is a free open source reimplementation of a reduced form carbon

cycle-climate model which has been used widely in previous scientific work and IPCC assessments. BernSCM represents

the carbon cycle and climate system with a small set of equations for the heat and carbon budget, the parametrization of

major nonlinearities, and the substitution of complex component systems with impulse response functions (IRF). The IRF

approach allows cost-efficient yet accurate substitution of detailed parent models of climate system components with near linear5

behaviour. Illustrative simulations of scenarios from previous multi-model studies show that BernSCM is broadly representative

of the range of the climate-carbon cycle response simulated by more complex and detailed models. Model code (in Fortran) was

written from scratch with transparency and extensibility in mind, and is provided as open source. BernSCM makes scientifically

sound carbon cycle-climate modeling available for many applications. Supporting up to decadal timesteps with high accuracy,

it is suitable for studies with high computational load, and for coupling with, e.g., Integrated Assessment Models (IAM).10

Further applications include climate risk assessment in a business, public, or educational context, and the estimation of CO2

and climate benefits of emission mitigation options.

1 Introduction

Simple climate models (SCM) consist of a small number of equations, which describe the climate system in an spatially and

temporally highly aggregated form. SCMs have been used since the pioneering days of computational climate science, to15

analyse the planetary heat balance (Budyko, 1969; Sellers, 1969), and to clarify the role of the ocean and land compartments

in the climate response to anthropogenic forcing through carbon and heat uptake (e.g., Oeschger et al., 1975; Siegenthaler and

Oeschger, 1984; Hansen et al., 1984). Due to their modest computational demands, SCMs enabled pioneering research using

the limited computational resources of the time, and continue to play a useful role in the hierarchy of climate models today.

Recent applications of SCMs are often found in research where computational resources are still limiting. Examples include20

probabilistic or optimization studies involving a large number of simulations, or the use of a climate component as part of a

detailed interdisciplinary model. SCMs are also much easier to understand and handle than large climate models, which makes

them useful as practical tools that can be used by non-climate experts for applications where detailed spatio-temporal physical
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modeling is not essential. This applies to interdisciplinary research, educational applications, or the quantification of the impact

of emission reductions on climate change.

An important application of SCMs is in Integrated Assessment Models (IAMs). IAMs are interdisciplinary models that

couple a climate component with an energy-economy model, to simulate emissions and their climate consequences. The com-

prehensive scope and sweeping interdisciplinarity of such models raise the challenge of maintaining a high and balanced5

scientific standard across all model components, especially when human resources are limited. This may apply particularly to

the climate component, as IAMs are mostly used within the economic and engineering disciplines. Climate and carbon cycle

representation are central parts of an IAM and have been critically assessed in the literature (Joos et al., 1999; Schultz and

Kasting, 1997; Vuuren et al., 2009).

BernSCM is a zero-dimensional global carbon cycle-climate model built around impulse-response representations of the10

ocean and land compartments, as described previously in Joos et al. (1996); Joos and Bruno (1996); Meyer et al. (1999). The

linear response of more complex ocean and land biosphere models with detailed process descriptions is captured using impulse-

response functions (IRFs). These IRF-based substitute models are combined with nonlinear parametrizations of carbon uptake

by the surface ocean and the terrestrial biosphere as a function of atmospheric CO2 concentration and global mean surface

temperature. Pulse response models have been shown to accurately emulate spatially resolved, complex models (Joos et al.,15

1996; Joos and Bruno, 1996; Meyer et al., 1999; Joos et al., 2001; Hooss et al., 2001).

The present version 1.0 of BernSCM is fundamentally analogous to the Bern Model as used already in the IPCC Second As-

sessment Report, Bern-SAR (whereas different versions of the Bern model family were used in the more recent IPCC reports).

BernSCM represents the relevant processes more completely than Bern-SAR, thanks to additional alternative representations

of the land and ocean components, which contain a more complete set of relevant sensitivities to temperature and atmospheric20

CO2.

Here, BernSCM model simulations are compared to previous multimodel studies. The model is run for an idealized atmo-

spheric pulse CO2 emission experiment of Joos et al. (2013), and for the SRES A2 emission scenario used in the C4MIP study

(Friedlingstein et al., 2006).

Together with this publication, BernSCM v1.0 is provided as an open source Fortran code for free use. The code was25

also rewritten from scratch, with flexibility and transparency in mind. The model is comprehensively documented, and easily

extensible. New alternative model components can be added using the existing ones as a template. A range of numerical

solution schemes is implemented. Up to decadal timesteps are supported with high accuracy, suitable for the coupling with,

e.g., emission models of coarse time resolution. However, the published code is a ready-to-run standalone model which may

also be useful in its own right.30

BernSCM offers a physically sound carbon cycle-climate representation, but it is small enough for use in IAMs and

other computationally tasking applications. In particular, the support of long time steps is ideally suited to the application

of BernSCM a an IAM component, as these complex models often use time steps on the order of 10 years.

BernSCM also offers a tool to realistically assess the climate impact of carbon emissions or emission reductions and sinks,

for example in aviation, forestry (Landry et al., 2016), blue carbon managment, peat development (Mathijssen et al., 2017), life35

2

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-233
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 2 November 2017
c© Author(s) 2017. CC BY 4.0 License.



cycle assessments(Levasseur et al., 2016), or to assess the interaction of climate engineering interventions such as terrestrial

carbon dioxide removal with the natural carbon cycle (Heck et al., 2016).

In this paper, we describe the model equations (section 2 and appendix A), uncertainty assessment (section 3), illustrative

simulations in comparison with previous multi-model studies (section 4), followed by a discussion (section 5) and conlusions

(section 6).5

2 The BernSCM model framework and equations

BernSCM simulates the relation between CO2 emissions, atmospheric CO2, radiative forcing (RF), and global mean Surface

Air Temperature (SAT) by budgeting carbon and heat fluxes globally between the atmosphere, the (abiotic) ocean, and the land

biosphere compartments. Given CO2 emissions and non-CO2 RF, the model solves for atmospheric CO2 and SAT (e.g., in

the examples of section 4), but can also solve for carbon emissions (or residual uptake) when atmospheric CO2 (or SAT and10

non-CO2 RF) is prescribed, or for RF when SAT is prescribed.

The transport of carbon and heat to the deep ocean, as well as the decay of land carbon result from complex, but essentially

linear behaviour of the ocean and land compartments. These are represented in BernSCM using impulse response functions

(IRF, or Green’s function). The IRF describes the evolution of a system variable after an initial perturbation, e.g., the pulse-like

addition of carbon to a reservoir. It fully captures linear dynamics without representing the underlying physical processes (Joos15

et al., 1996). More illustratively, the model can be considered to consist of box models, which are an equivalent representation

of the IRF model components (Figure 1).

The net primary production (NPP) of the land biosphere and the surface ocean carbon uptake depend on atmospheric CO2

and surface temperature in a nonlinear way. These essential nonlinearities are described by parametrizations linking the linear

model components.20

2.1 Carbon cycle component

The budget equation for carbon is

dmA
dt

= e− fO −
dmL
dt

(1)

where mA denotes the atmospheric carbon stored in CO2, e denotes CO2 emissions, fO the flux to the ocean, mL the land

biosphere carbon stock, and t is time. Here,mL refers to the (potential) natural biosphere. Human impacts on the land biosphere25

exchange (LULUC) are not simulated in the present version, and treated as exogenous emissions (e). An overview of the model

variables and parameters is given in tables 1 and 2.

The change in land carbon is given by the balance of net primary production (NPP) and decay of assimilated terrestrial

carbon,

dmL
dt

= fNPP− fdecay (2)30

3

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-233
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 2 November 2017
c© Author(s) 2017. CC BY 4.0 License.



Decay includes heterotrophic respiration (RH), fire and other disturbances due to natural processes.

Carbon is taken up by the ocean through the air-sea interface (fO) and distributed to the mixed surface layer (mS) and the

deep ocean interior (fdeep)

fO =
dmS

dt
+ fdeep (3)

Global NPP is assumed to be a function of the partial pressure of atmospheric CO2 (pCO2 ) and the SAT deviation from5

preindustrial equilibrium,

fNPP = ϕNPP(pCO2
A ,∆T ) (4)

The net flux of carbon into the ocean is proportional to the gas transfer velocity (kg) and the CO2 partial pressure difference

between surface air and seawater:

fO = kgAO ε(pCO2
A − pCO2

S ) (5)10

where Ao is ocean surface area and eps a unit conversion factor.

The global average perturbation in surface water ∆pCO2
S is a function of dissolved inorganic carbon (DIC) in the surface

ocean at constant alkalinity (Joos et al., 1996), and SAT (Takahashi et al., 1993).

∆pCO2
S = ψ(∆DIC)χ(∆T ) (6)

∆DIC and pCO2
A are related to model variables (cf. tables 1, 2),15

∆DIC =
mS

HmixAO %Mµmol 10−15Gt/g
(7)

pCO2
A =mA · ε (8)

The carbon cycle equation set is closed by the specification of fdecay and fdeep (section 2.3), as well as ∆T , i.e., the coupling

to the climate component (section 2.2).20

2.2 Climate component

BernSCM simulates the deviation in global mean SAT from the preindustrial state. SAT is approximated by the temperature

perturbation of the surface ocean ∆T , which is calculated from heat uptake by the budget equation

d∆T
dt

cS = fHO − fHdeep (9)

where cs is the heat capacity of the surface layer, fHO is ocean heat uptake, and fHdeep is heat uptake by the deep ocean (and25

accounts for the bulk of the effective heat capacity of the ocean). Continental heat uptake is neglected due to the much higher

ratio of heat conductivity to heat capacity of the ocean in comparison to the continent.
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fHO is taken to be proportional to RF (Forster et al., 2007) and the separation of SAT from radiative equilibrium (∆T =

∆T eq(RF ); see table 2 for parameter definitions),

fHO = RF
(

1− ∆T
∆T eq

)
AO
aO

(10)

This relation follows from the assumption that feedbacks are linear in ∆T (e.g., Hansen et al., 1984). ∆T eq is given by

∆T eq = RF
∆T2×
RF2×

(11)5

where ∆T2× is climate sensitivity (defined as the equilibrium temperature change corresponding to twice the preindustrial

CO2 concentration). Climate sensitivy is an external parameter, as the model does not represent the processes determining

equilibrium climate response. RF of CO2 is calculated as (Myhre et al., 1998)

RFCO2 = ln

(
pCO2
A

pCO2
A0

)
RF2×
ln(2)

(12)

where pCO2
A is the preindustrial reference concentration of atmospheric CO2, and RF2× is the RF at twice the preindustrial10

CO2 concentration. RF of other GHGs, aerosols etc. can be parametrized in similar expressions involving GHG and pollutant

emissions and concentrations (Prather et al., 2001). In the provided BernSCM code, non-CO2 RF is treated as an exogenous

boundary condition. Total RF is then

RF = RFCO2 + RFnonCO2 (13)

The calculation of fHdeep (section 2.3) completes the climate model.15

2.3 Impulse response model components

The response of a linear system to a time-dependent forcing f can be expressed by

m(t) =

t∫

t0

f(t′)r(t− t′)dt′ (14)

where equilibrium is assumed for t≤ t0. The function r is the system’s impulse response function (IRF), as can be shown by

evaluating the integral for a Dirac impulse (f(t′) = δ(t′)). The IRF indicates the fraction remaining in the system at time t of a20

pulse input at a previous time t′. Because of linearity of the integral, any physically meaningful integrand f can be represented

as a sequence of such impulses of varying size.

In BernSCM, an IRF is used to calculate the perturbation of heat and carbon in the mixed surface ocean layer (mixed layer

IRF, (Joos and Bruno, 1996). For carbon,

mS(t) =

t∫

t0

fO(t′)rO(t− t′)dt′, (15)25
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and similarly, for heat

∆T (t)cS =

t∫

t0

fHO (t′)rO(t− t′)dt′ (16)

where the initial SAT deviation is zero. This approach has been shown to faithfully reproduce atmospheric CO2 and SAT as

simulated with the models from which the IRF is derived (Joos and Bruno, 1996). For temperature, the linear approach works

since relatively small and homogeneous perturbations of ocean temperatures do not affect the circulation strongly and can be5

treated as a passive tracer (Hansen et al., 2010).

Equation (15) closes the ocean C budget equation (3), as can be seen by taking the derivative with respect to time (using

r(0) = 1),

dmS

dt
= fO(t)−


−

t∫

t0

fO(t′)
drO
dt

(t− t′)dt′




︸ ︷︷ ︸
fdeep

(17)

where fdeep is the flux to the deep ocean. Similarly, equation (16) closes the budget equation for ocean heat uptake (9).10

Another IRF is used for the carbon mL in living or dead biomass reservoirs of the terrestrial biosphere,

mL(t) =

t∫

t0

fNPP(t′)rL(t− t′)dt′+mL(t0) (18)

Again, equation (18) closes the budget equation for the land biosphere (2), as shown by the derivative with respect to time,

dmL
dt

= fNPP(t)−


−

t∫

t0

fNPP(t′)
drL
dt

(t− t′)dt′




︸ ︷︷ ︸
fdecay

(19)

The time derivative of the land IRF is also known as the decay response function (e.g., Joos et al., 1996).15

The above IRFs can be expressed as a sum of exponentials,

r(t) = a∞+
∑

k

ake
−t/τk (20)

where the constant term a∞ corresponds to an infinite decay timescale.

The ocean IRF contains a positive constant coefficient a∞, indicating a fraction of the perturbation that will remain indef-

initely (implied by carbon conversation in the ocean model). CaCO3 compensation by sediment dissolution and weathering20

(Archer et al., 1998) are not considered here, but could be described using analogous elimination processes with time scales on

the order of 104 to 105 kyr (Joos et al., 2004). In land biosphere models, in contrast, organic carbon is lost to the atmosphere

by oxidation to CO2 at non-zero rates, and consequently all timescales are finite (i.e., a∞ = 0), and the IRF tends to zero

(Figure 2).
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Presently the parameters of the ocean mixed layer IRF are fixed. A possible change of ocean transport due to global warming

is not captured. In contrast, the HRBM land biosphere IRF is temperature-dependent, and captures the enhancement of biomass

decay by global warming (s.a. Table 3 and section 3).

Inserting formula (20) in the pulse response equation (14) yields

m(t) =
∑

k

t∫

0

f(t′)ake−(t−t′)/τk dt′ (21)5

Thus the expression (14) separates into a set of independent integrals mk corresponding to the number of time scales of the

response. Taking the time derivative of expression (21) reveals the equivalence to a diagonal system of linear differential

equations,

dmk

dt
= f(t)ak −mk/τk

m=
∑

k

mk (22)

The direct numerical evaluation of the equation (14) involves integrating over all previous times at each timestep. The differen-10

tial form (22) allows a recursive solution, which is much more efficient, especially for long simulations (the recursive solution

implemented in BernSCM is described in appendix A).

Equation (22) shows the IRF to be equivalent to a box model, whereby each box mk receives a fraction ak of the input f ,

and has a characteristic turnover time τk (Figure 1). For the mixed ocean surface layer the carbon content of box k is given by:

dmSk

dt
= fO(t)aOk

−mSk
/τOk

(23)15

and the change in total carbon content in the mixed layer is:

mS =
∑

k

mSk
(24)

Similar equations describe the heat content in the ocean surface layer, as well as the carbon stored in the land biosphere

(Figure 1).

Thinking of IRF components as box models is conceptually meaningful. The simple Bern 4 box biosphere model (cf. table 3),20

for example, contains boxes corresponding to ground vegetation, wood, detritus, and soil. The HRBM land component, on the

other hand, is abstractly defined by an IRF, but corresponds to boxes which correlate with biospheric reservoirs. However,

since different box models may show a similar response, in practice the coefficients ak and time scales τk may not be uniquely

defined by the IRF, and should be interpreted primarily as abstract fitting parameters (Enting, 2007).

The timescales of an IRF describing a linear system may be thought of as the inverse eigenvalues of the model matrix of25

that system. For example, the timescales of the mixing layer IRF are the inverse eigenvalues of a matrix describing a diffusive

multilayer ocean model (Hooss et al., 2001). A large model matrix yields a spectrum of many eigenvalues and timescales and

corresponding model boxes. In practice, IRFs are approximated with fewer fitting parameters and, equivalently, timescales
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(4-6 in the case of BernSCM). Joos et al. (1996) used IRFs combined from two or more functions to minimize the number of

parameters needed for an accurate representation. In BernSCM, simple IRFs of the form (20) are used exclusively. This allows

adequate accuracy and a consistent interpretation as a multibox model.

3 Carbon cycle uncertainty assessment

The carbon cycle-climate uncertainty of simulations with BernSCM can be assessed in two ways. First, to assess structural un-5

certainty, different substitute models for the ocean and land components can be used (Table 3). Currently, this approach is quite

limited by the set of available substitute models. Second, parameter uncertainty can be assessed by varying the temperature and

CO2 sensitivities of the model, based on a standard set of components that represent the key dependencies as completely as

possible (here, the IRF substitutes for the HILDA ocean model, and the HRBM land biosphere model are used for the standard

setup).10

The uncertainties of the global carbon cycle concern the sensitivity of the modelled fluxes of carbon and heat to changing

atmospheric CO2 and climate. Key uncertainties strongly affecting the overall climate response are associated with land C

storage: The dependency of NPP on CO2 (CO2 fertilization, eq. 4), and the dependency of land C on temperature (fdecay

increases with warming, eq. (2)) give rise to large and opposed carbon fluxes which are both very uncertain in magnitude

(Le Quéré et al., 2016). While all substitute land models available for BernSCM include CO2 fertilization, only the HRBM15

substitute model represents temperature sensitivity of biomass decay (IRF parameters are temperature-dependent; Table 3).

As for the ocean, the uncertainty of heat uptake into the surface ocean is treated in terms of climate sensitivity (eq. 10).

The efficiency of the uptake of heat (fHdeep) and carbon (fdeep) into the deep ocean is not sensitive to temperature, as the

currently available substitute models all represent a fixed circulation pattern (IRF parameters are not temperature dependent).

The nonlinear chemistry of CO2 dissolution in the surface ocean (eq. 5), which determines the sensitivity of ocean C uptake20

to atmospheric CO2, is scientifically well established (Dickson et al., 2007; Orr and Epitalon, 2015), and is not treated as an

uncertainty in BernSCM. The temperature sensitivities of NPP (eq. 4) and CO2 dissolution in the surface ocean (eq. 6) are

treated as uncertain here, but have secondary influence on the climate response.

Similar to previous studies using models from the Bern family (Plattner et al., 2008; Joos et al., 2001; Meehl et al., 2007;

Van Vuuren et al., 2008), the parameter uncertainty range is assessed using the following setups:25

“coupled”: All temperature and CO2 sensitivities at their standard values

“uncoupled”: All sensitivities zero (except from the ocean CO2 dissolution chemistry)

“Conly”: Only CO2 dependencies considered (CO2 fertilization)

“Tonly”: Only temperature dependencies considered (NPP, decay and ocean C uptake)

Climate models with explicit and detailed carbon cycle components exhibit a wide range of responses, as shown in the30

intercomparison studies of climate models with a detailed carbon cycle, C4MIP (Friedlingstein et al., 2006) and CMIP5 (Jones
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et al., 2013). The authors analysed the feedback of carbon cycle-climate models using linearized sensitivity measures. These

are derived from a simulation with temperature dependence (“coupled”) and one without (“uncoupled”; note that these names

have a different meaning in BernSCM). Total CO2 emissions for the “coupled” (left hand side) and “uncoupled” (right hand

side) simulations can be expressed as

∆CcA(ε+βL +βO +α(γL + γO)) = ∆CuA(ε+βO +βL) (25)5

where ∆CA is the cumulative change in atmospheric CO2 (in ppm) in the coupled (c) or uncoupled (u) case, and the terms in

brackets represent the total sensitivity of C storage to ∆CA; in particular, β is the change in carbon stored (in GtC) on land (L)

or in the ocean (O) in response to atmospheric CO2 change, γ is similarly the change in carbon storage in response to warming,

and α is the transient climate sensitivity with respect to atmospheric CO2 concentration; ε converts ppm to GtC (cf. Table 2;

the formula in the original paper implies identical units for atmospheric and stored carbon).10

The climate-carbon cycle feedback is measured by the feedback parameter g, defined by

∆CcA
∆CuA

=
1

1− g (26)

and is thus estimated by

g =− α(γL + γO)
ε+βO +βL

(27)

Thus the feedback strength scales with the assumed climate sensitivity and the temperature sensitivities, and is reduced by15

CO2-induced sinks.

The BernSCM sensitivity setups can be expressed in terms of the C4MIP sensitivity parameters: Tonly corresponds to βL =

0, Conly to γL = γO = 0, and uncoupled to βL = γL = γO = 0. This can be used to estimate climate-carbon cycle feedback g

captured in BernSCM. A comparison of the uncertainty ranges for BernSCM (including structural and parameter uncertainty)

and the C4MIP ensemble is shown in section 4.20

4 Illustrative simulations with BernSCM

In this section, simulations with BernSCM are compared with the results from two multi-model intercomparison projects: an

analysis of Carbon dioxide and climate impulse response functions (Joos et al., 2013, here referred to as IRFMIP), and the

C4MIP Climate–Carbon Cycle Feedback Analysis (Friedlingstein et al., 2006).

Coupled carbon cycle-climate models can be characterized and compared based on their response to a CO2 emission pulse to25

the atmosphere (Joos et al., 2013). In IRFMIP, the airborne fraction (AF) for a pulse of 100 GtC, emitted on top of current (i.e.,

year 2010) atmospheric CO2 concentrations, was simulated by a set of 15 carbon cycle-climate models of different complexity.

For three of these models (Bern3D-LPJ, GENIE, MAGICC), ensembles sampling the parameter uncertainty of these models

are included in IRFMIP. Thus, IRFMIP captures structural as well as parameter uncertainty.

The IRFMIP pulse experiment was repeated with BernSCM, exploring parameter uncertainty of the carbon cycle (section 3),30

as well as structural uncertainty, using the ocean model IRFs HILDA and Princeton in various combinations with the land
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biosphere components HRBM and Bern-4box (Figure. 3). Simulations were run for equilibrium climate sensitivities of 3◦C

(standard setup), 2 K, and 4.5 K.

The AF simulated with BernSCM broadly agrees with the set of simulations from IRFMIP. 100 years after the pulse, it is 0.30

(0.34–0.57) for a climate sensitivity of 3K (for coupled setup with uncertainty range in brackets). Climate sensitivity uncertainty

only slightly affects the upper end of this range (Figure 3). For AF simulated with BernSCM, the standard coupled setup is5

close to the IRFMIP multimodel median, but the BernSCM uncertainty range is asymmetric. The IRFMIP multi-model range

is similarly asymmetric. For the MAGICC and GENIE ensembles, the medians also correspond with the BernSCM standard

case, while the uncertainty ranges are more symmetric, which may be related to the method used to sample the parameter

uncertainties.

The BernSCM SAT response also broadly agrees with IRFMIP. The standard coupled simulation is somewhat lower than10

the IRFMIP median, which is explained in part by the climate sensitivity (3 K) being slightly lower than the IRFMIP average

(3.2). The short term temperature response of BernSCM in particular is on the lower side of the IRFMIP range, suggesting

stronger ocean mixing. The quickest initial temperature increase of the BernSCM simulations is obtained with the Princeton

ocean model component (dashed lines), which shows a slower initial mixing to the deep ocean than the other implemented

components (Figure 2). The comparability of the SAT projections is limited, as the range of climate sensitivities considered in15

the BernSCM simulations (2-4.5 K) differ somewhat from that of the IRFMIP multimodel set (1.5-4.6 K) and the single model

ensembles (1.9-5.7 K), and are compounded with RF differences resulting from the uncertainty in atmospheric CO2.

The C4MIP study used a SRES A2 emission scenario to compare the carbon cycle sensitivities of a range of models. As

in the C4MIP exercise, BernSCM was run for SRES A2 without any non-CO2 forcings (Figure 4; prescribed historical and

scenario emissions were smoothed with the R smooth.spline function (R Core Team, 2015) for 41 degrees of freedom for use20

with different time steps). Land use was treated as an exogenous CO2 emission, while the land model simulates an undisturbed

biosphere.

The C4MIP results can be compared to the BernSCM simulations using the carbon cycle sensitivity parameters defined in

section 3 (Table 4). The sensitivity parameters for the BernSCM standard simulation (HILDA-HRBM with coupled carbon

cycle) lie within the C4MIP range. The uncertainty range for BernSCM, however, is not congruent with the multi-model25

range of C4MIP. Maximum and standard sensitivity for BernSCM are practically identical. Notably, this sensitivity is smaller

(absolutely) than the C4MIP average for the land carbon response to CO2 increase and warming. The resulting gain g is also

smaller, though this results in large part from the lower climate sensitivity in BernSCM (which corresponds to 2.5 K as used

for the Bern-CC model contribution to C4MIP). The lower end (in absolute terms) of the BernSCM carbon cycle sensitivity

range is, on the other hand, zero per definition for all but the ocean-CO2 sensitivity βO (see section 3). As a consequence, the30

climate-carbon cycle feedback range also includes zero. In contrast, the C4MIP range does not include zero for all sensitivity

parameters.

The land carbon uptake until 2100, under the different BernSCM configurations, varies over 500 GtC (Figure 4), more than

three times the range of ocean uptake (180 GtC). This partly reflects the limited coverage of the uncertainty in ocean mixing,
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but also the fact that the land carbon sink is, together with the land use-related source, the most uncertain item in the budget

(Le Quéré et al., 2009).

Together, the uncertainties in the carbon cycle sensitivities amount to a range of about 200 ppm in the projected atmospheric

CO2 for this scenario around 2100; the SAT range, after emissions have ceased in 2100, reaches roughly 1 K. Thus the carbon

cycle uncertainty range amounts to about 1/3 of the total anthropogenic perturbation for both CO2 and SAT.5

5 Discussion

We simulated illustrative scenarios from two recent multi-model studies, C4MIP and IRFMIP, to compare BernSCM to the lit-

erature of carbon-cycle climate models. The results show that BernSCM is broadly representative of the current understanding

of the global carbon cycle-climate response to anthropogenic forcing (in a time-averaged sense that does not address internal

variability). The BernSCM uncertainty range in CO2 and SAT projections is broadly similar to the ranges spanned by prob-10

abilistic single-model ensembles, and multi-model “ensembles of opportunity” such as the 15 IRFMIP models. The shown

BernSCM uncertainty range consists mainly of parameter uncertainty and to a small extent of structural uncertainty. For the

standard, coupled model setup, the sensitivities of ocean and land carbon uptake to changing CO2 and climate (Table 4) of

BernSCM are within the range of the detailed carbon cycle models in C4MIP. However, as some C4MIP models show much

higher sensitivities, the BernSCM range does not capture the full C4MIP multi-model range. On the other hand, the C4MIP set15

is unlikely to sample uncertainty exhaustively, as each model contributed only a single, “most likely” simulation. Thus it does

not include zero (or weak) sensitivities, whereas the BernSCM range does.

Figure 3 illustrates the importance of a systematic appraisal of uncertainty considering not only the “most likely” model

setups, as the standard coupled response in CO2 and SAT is near the lower end of the range, and may thus understate the

impact. This is even more the case if the key processes are not implemented fully. For example, the early model version Bern-20

SAR, which was used for the Global Warming Potential (GWP) estimates in the IPCC second assessment report (Schimel

et al., 1996) and more recently for integrated assessment (e.g. Hijioka et al., 2006), lacks temperature sensitivity of land carbon

uptake (corresponding to the Conly setup) and coincides with the lower end of the BernSCM range.

As Figure 4 shows, solutions with different timesteps and numerical schemes as implemented in BernSCM are largely

equivalent for a sufficiently smooth forcing. This offers the flexibility to opt for simplicity of implementation or maximum25

speed as required by the application (see also Appendix A).

Currently, a limited set of substitute models is available and included with BernSCM. The simple structure and open source

policy of BernSCM allows users to address these current limitations according to the needs of their applications. More compo-

nents can be added using the existing ones as a template. This requires the specification of the IRF and the parametrization of

gas exchange for the surface ocean, or NPP for the land biosphere, respectively (as described in Joos et al., 1996; Meyer et al.,30

1999). For the ocean component, it is in principle possible to represent temperature dependency of ocean transport in the same

way as it is done for the HRBM land biosphere component (Meyer et al., 1999), though this has not been done yet.
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One application of BernSCM is to use it as an emulator of the global long-term response of complex climate-carbon cycle

models by adding the corresponding substitute model components. Additionally, pattern scaling can be applied to transfer

the global mean temperature signal into spatially resolved changes in surface temperature, precipitation, cloud cover, etc.,

exploiting the correlation of global SAT with regional and local changes (Hooss et al., 2001). This allows to drive spatially

explicit models, e.g., of terrestrial vegetation (as in Joos et al., 2001; Strassmann et al., 2008) or climate change-related impacts5

(as in Hijioka et al., 2009).

The addition of further alternative model components will extend the structural uncertainty that can be represented with

BernSCM. A sufficient coverage of structural uncertainty could allow the interpolation between alternative model components,

to represent uncertainty with scalable parameters (and removing the distinction between structural and parameter uncertainty).

Such a parametrization of the uncertainty would enhance the possibilities for probabilistic applications of BernSCM.10

6 Conclusions

BernSCM is a reduced-form carbon cycle-climate model that captures the characteristics of the natural carbon cycle and the

climate system essential for simulating the global long term response to anthropogenic forcing. Simulated atmospheric CO2

concentrations and SAT are in good agreement with results from two comprehensive multi-model ensembles. Process detail

is minimal, due to the use of IRFs for system compartments that can be described linearly, and nonlinear parametrizations15

governing the carbon fluxes into these compartments. This framework allows, in particular, to represent the wide range of

response time scales of the ocean and land biosphere, and the nonlinear chemistry of CO2 uptake in the surface ocean - both

essential for reliably simulating the global climate response to arbitrary forcing scenarios.

Due to its structural simplicitly and computational efficiency, BernSCM has many potential applications. In combination

with pattern scaling, BernSCM can be used to project spatial fields of impact-relevant variables for applications such as climate20

change impact assessment, coupling with spatially explicit land biosphere models, etc. With alternative numerical solutions

of varying complexity and stability to choose from, applications range from educational to computationally intensive inte-

grated assessment modeling. BernSCM also offers a model-based alternative to GWPs for estimation of the climate impact of

emissions and can be used to quantify climate benefits of mitigation options.

The generic implementation of linear IRF-components offers a transparent, extensible climate model framework. Current25

limitations concern the number of available substitute models (limiting the uncertainty range represented), and a fixed ocean

transport. An addition of further alternative model components, and more flexible representation of sensitivities in terms of

continuously variable parameters would further increase the models usefulness, for example for probabilistic applications.

Code availability. The source code of the Bern Simple Climate Model is available from the github repository at https://doi.org/10.5281/zenodo.1038117
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Appendix A: Implementation of the pulse-response model

A1 Discretization

For the solution of the pulse-response equation (14), two discrete approximations are implemented, which both correspond to

the differential equation system (22).

First, f can be taken as constant over a sufficiently short timestep ∆t= ti− ti−1. This approximation yields the system5

mn =m∞n +
∑

k

mkn

mkn =mkn−1 e
−∆t/τk +Ak fn− 1

2
∆te−∆t/τk

m∞n =m∞n−1 +A∞ fn− 1
2

∆t (A1)

where the subscript n indicates the state at time tn, and fn− 1
2

is the value of f at midpoints between tn−1 and tn.

Second, for longer timesteps, a better approximation is obtained by assuming linear variation of f over each time step. This

yields

mkn =mkn−1 e
−∆t/τk + (Ak fn−1 +Bk (fn− fn−1))∆te−∆t/τk

m∞n =m∞n−1 + (A∞ fn−1 +B∞ (fn− fn−1))∆t (A2)10

The coefficients in the above equations are given by

Ak = ak
τk
∆t

(e∆t/τk − 1)

A∞ = a∞

Bk = ak
τk
∆t

(
1− τk

∆t
(1− e−∆t/τk)

)
e∆t/τk

B∞ =
a∞
2

(A3)

In the following, equations (A1-A3) are derived.

We substitute t′ by t−x in equation (14) to get

m(t) =

t0∫

t

f(t−x)r(x)dx (A4)15

Taking f to be constant over one time step,

m(tn)'
n∑

i=1

f(tn− ti− 1
2
)

ti∫

ti−1

r(x)dx, (A5)

where the midpoint value ti− 1
2

is used for accuracy. The integral in (A5) can be evaluated explicitly, to define an adapted,

discrete IRF Ri,

Ri = 1/∆t

ti∫

ti−1

r(x)dx (A6)20
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where ∆t is the length of the (constant) time step. Evaluating the integral using the pulse-response function (20) yields

Ri =A∞+
∑

k

Ake
−ti/τk (A7)

This allows to write equation (A5) as

mn =m∞n +
∑

k

mkn

m∞n =
n∑

i=1

∆tfn−i+ 1
2
A∞

mkn =
n∑

i=1

∆tfn−i+ 1
2
Ake

−ti/τk (A8)

To derive a recursive expression from equation (A8), split sums,5

m∞n = ∆t

(
fn− 1

2
A∞+

n∑

i=2

fn−i+ 1
2
A∞

)

mkn = ∆t

(
fn− 1

2
Ake

−t1/τk +
n∑

i=2

fn−i+ 1
2
Ake

−ti/τk

)

(A9)

and replace indices i= j+ 1, setting t0 = 0, t1 = ∆t, tj+1 = tj + ∆t

m∞n = ∆t


fn− 1

2
A∞+

n−1∑

j=1

fn−1−j+ 1
2
A∞




mkn = ∆t


fn− 1

2
Ake

−∆t/τk +
n−1∑

j=1

fn−1−j+ 1
2
Ake

−(tj+∆t)/τk




(A10)

comparison with equation (A8) yields the recursive differential system (A1).

Assuming now linear variation of f over each time step in equation (14),10

m(tn)'
n∑

i=1

ti∫

ti−1

(
fn−i + (fn−i+1− fn−i)

ti−x
∆t

)
r(x)dx, (A11)

=
n∑

i=1

fn−i

ti∫

ti−1

r(x)dx+ (fn−i+1− fn−i)
ti∫

ti−1

(
ti−x

∆t

)
r(x)dx (A12)

Substituting equation (A6) for the first integral and using partial integration on the second, one obtains

m(tn)'
n∑

i=1


fn−i∆tRi +

fn−i+1− fn−i
∆t




ti∫

ti−1

x∫

ti−1

r(y)dydx




 (A13)15
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The double integral of the pulse-response function evaluates to

ti∫

ti−1

x∫

ti−1

r(y)dydx=
∑

k

Bk e
−ti/τk ∆t2 (A14)

By a similar procedure as for the constant flux approximation, the recursive formulation (A2) is obtained.

A2 Numerical schemes

For the solution of the BernSCM model equations, both explicit and implicit time stepping is implemented.5

The stability requirement for the numerical solution depends on the equilibration time for the ocean surface CO2 pressure

pCO2
S . Due to the buffering of the carbonate chemistry, the CO2 equilibration time is smaller than the gas diffusion time scale

(∼ 10yr) by a ratio given by the buffer factor. For undisturbed conditions (buffer factor ' 10) the equilibration time is about

1 yr. With increasing DIC, the buffer factor increases and the equilibration time shortens, making the equation system stiffer.

Accordingly, when the model is solved explicitly with a time step of 1 yr, instability typically occurs after sustained carbon10

uptake by the ocean, which can occur in many realistic scenarios.

For the tested scenario range, the explicite solution is stable at a time step on the order of 0.1 yr, for which the piecewise

constant approximation is accurate. For larger step size, an implicit solution is required to guarantee stability.

The piecewise constant approximation is adequate for time steps up to 1 yr, and the piecewise linear approximation for up

to decadal time steps. An overview of the performance of three representative settings (set at compile time) for the C4MIP A215

scenario is given in Table A1.

The explicit solution is only implemented for the piecewise constant approximation (A1) and is obtained by approximating

fn− 1
2

with fn−1.

For the implicit solution, the piecewise constant (A1) or the piecewise linear approximation (A2), respectively, is solved for

the quantities at tn, approximating fn− 1
2

by fn where applicable. Equations (A1,A2) are expressed in a common equation by20

substituting

mkn =mkn−1 pmk + fn pfk + fn−1 p
old
fk (A15)

with the following parameters for the piecewise constant approximation (A1),

pmk = e−∆t/τk

pfk = ∆tAke−∆t/τk

pold
fk = 0 (A16)

and for the piecewise linear approximation (A2),25

pmk = e−∆t/τk

pfk = ∆tBke−∆t/τk

pold
fk = ∆t(Ak −Bk)e−∆t/τk (A17)
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In the following, the implicit solution for the piecewise constant discretization is derived. Here, the fully implicit scheme for

land and ocean exchange is discussed, but for stability, it is only crucial to treat ocean uptake implicitly.

Consider first the equation system for carbon, assuming temperature to be known (or neglecting temperature dependence of

model coefficients). Equation (A15) is applied to land carbon exchange for the constant approximation (A16),

mLn =mc∆
L + ∆fNPP

∑

k

pfkL

mc∆
L =

∑

k

mLkn−1pmkL + fNPPn−1

∑

k

pfkL (A18)5

where mc∆
L is the land carbon stock obtained after one time step if NPP remained constant (“constant flux commitment”), and

∆fNPP = (fNPPn− fNPPn−1) is the change in NPP over one time step.

For ocean carbon uptake,

mSn =mc0
S + fOn

∑

k

pfkO

mc0
S =

∑

k

mSkn−1 pmkO (A19)

where mc0
S is the value of mS after one time step if fOn = 0 (“zero-flux commitment”).10

To solve the implicit system, the nonlinear parametrizations need to be linearized around tn−1. Linearizing ocean surface

CO2 pressure (6) and inserting in equation (5) yields

fOn ' kgAO(mAn− εpCO2
S,n−1) + kgAO ε

dpCO2
S

dmS

∣∣∣∣∣
n−1

(mSn−1−mSn) (A20)

where equations (7,8) were used. Similarly, NPP (4) is linearized,

∆fNPPn '
dfNPP

dmA

∣∣∣∣
n−1

(mAn−mAn−1) (A21)15

using equation (8).

The system is completed with the discretized budget equation (1)

mAn =mAn−1 + (en− 1
2
− fOn)∆t − (mLn−mLn−1) (A22)

Here, en− 1
2

is assumed to be known (though this only applies to the “forward” solution for atmospheric CO2 from emissions,

solving for emissions from CO2 is also implemented in the model code).20

After calculating the “commited” values mc∆
L n, m

c0
S n from the model state at tn−1, equations (A19) through (A22) are

solved

∆fNPP =

dfNPP
dmA

∣∣∣
n−1

UV +W

(
mLn−1−mc∆

L + ∆ten− 1
2

+ ∆tkgAO
(
εpCO2

S,n−1−mAn−1

+ ε
dpCO2

S

dmS

∣∣∣∣∣
n−1

[
mc0
S −mSn−1 +

∑

k

pfkO
(mLn−1−mc∆

L

∆t
+ en− 1

2

)]))
(A23)
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with the auxiliary variables

U = kgAO ε
dpCO2

S

dmS

∣∣∣∣∣
n−1

∑

k

pfkO + 1 (A24)

V =
dfNPP

dmA

∣∣∣∣
n−1

∑

k

pfkL + 1 (A25)

W = ∆tkgAO (A26)

and, after inserting into equation (A18),5

fOn =
kgAO
U +W

(
mAn−1− εpCO2

S,n−1− ε
dpCO2

S

dmS

∣∣∣∣∣
n−1

(mc0
S −mSn−1)− (mLn−mLn−1) + ∆ten− 1

2

)
(A27)

The remaining variables are then calculated using equations (A19) and (A22), whereby first the componentsmkn are calculated

as in equation (A15) and then summed. Finally, the non-linear parametrisations (5,6) are recalculated with the updated model

state.10

The order of these equations matters, as the updated variables are successively inserted into the following equations. The

land part is solved first, and can be substituted by an explicite step or a separate model, while keeping the ocean step implicit.

An implicit time step is also implemented for calculating SAT from RF (again, solving RF from SAT is also implemented but

not discussed here). RF(tn) can be assumed as known, as atmospheric CO2 is calculated first (i.e., no linearization necessary).

Applying equation (A15) to temperature,15

∆TncS = ∆T c∆cS + ∆fHO
∑

k

pfkO

∆T c∆ =
∑

k

∆Tkn−1 pmkO + fHO n−1/cS
∑

k

pfkO (A28)

where ∆T c∆ is the “commited temperature” for constant heat flux to the ocean, and ∆fHO = fHOn− fHOn−1 is the change in

heat flux over one time step. Equations (11,10,A28) are solved for fHO ,

fHOn =
RFn− RF2×

∆T2×
∆T c∆ + fHn−1

∑
k pfkO

RF2×
∆T2× cS

RF2×
∆T2× cS

∑
k pfkO + aO/AO

(A29)20

Temperature change ∆Tn then follows from equation (A28).

The case of piecewise linear approximation (A17) differs from the piecewise constant one (A16) only in a non-zero contri-

bution of fn−1 and a slightly different budget equation,

mAn =mAn−1 +
(
en− 1

2
− fOn + fOn

2

)
∆t − (mLn−mLn−1) (A30)

The first difference merely changes the calculation of “committed” changes, and only the second difference affects the solution25

of the implicit time step. In practice, however, this can be neglected without loss of accuracy, and thus equations (A23 – A27)

and (A29) are also used to solve the piecewise linear system (while equation (A30) is used to close the budget).
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A3 Temperature dependent parameters

Temperature change in general affects the behavior of the ocean and land biosphere compartments, which are represented by

IRFs. Thus, IRF coefficients can be temperature dependent, as it is the case with the HRBM substitute land biosphere model.

In the above derivations, the change of temperature over one time step was not considered.

BernSCM updates any temperature-dependent model parameters by approximating the current temperature ∆Tn by the5

“committed” temperature ∆T c∆ as defined in equation (A28). Accuracy is further improved by substituting ∆T c∆ for ∆Tn in

evaluating equation (A20) with temperature dependent parametrisations (6).

Competing interests. The authors declare that they have no conflict of interest.
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Figure 1. BernSCM as a box-type model of the carbon cycle-climate system based on impulse response functions. Heat and carbon taken

up by the mixed ocean surface layer and the land biosphere, respectively, is allocated to a series of boxes with characteristic time scales

for surface-to-deep ocean transport (τ ) and of terrestrial carbon overturning (τL). The total perturbations in land and surface ocean carbon

inventory and in surface temperature are the sums over the corresponding individual perturbations in each box, (mSk,∆Tk,mLk). Using

pattern scaling, the response in SAT can be translated to regional climate change for fields v(x, t) of variables such as SAT or precipitation.
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Figure 2. IRFs of ocean (blue) and land (green) model components (without temperature dependence). Ocean components are normalized

to a common mixed layer depth of 50m (multiplied by Hmix/50m), causing initial response to deviate from 1.
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Figure 3. IRFMIP pulse response range compared to BernSCM range for parameter uncertainty (colors according to legend) and structural

uncertainty, with model versions HILDA/HRBM (solid lines), HILDA/4box (dots), Princeton/HRBM (dashed). Standard climate sensitivity

is 3 K, and a climate sensitivity range of 2–4.5 K is shown by the white area (envelope of all BernSCM runs). Single-model ensemble ranges

from IRFMIP are included as errorbars indicating the 5-95% range and dots indicating the median. The multimodel IRFMIP range is shown

by boxplots indicating median (bold black line), first quartiles (box), extreme values (whiskers) excluding outliers deviating from the median

by more than 1.2 times the interquartile distance (asterisks).
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Figure 4. BernSCM simulations of the SRES A2 scenario used for C4MIP, with a climate sensitivity of 2.5◦C and the HILDA/HRBM

ocean/land components. Results for three numerical schemes are overlaid in the same line style; i. 0.1 yr Euler forward timestep (solid), ii.

1 yr implicit timestep (dashed), iii. 10 yr implicit timestep with piecewise linear approximation of fluxes (dash-dot); the difference at this

resolution is only visible in C uptake.
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Table 1. Model variables

Variable Meaning Unit

mA atmospheric CO2 carbon GtC

mL land biomass carbon GtC

mO ocean carbon perturbation GtC

mS dissolved inorganic C perturbation in ocean mixed layer GtC

∆DIC perturbation of dissolved inorganic C concentration in mixed layer µmol/kg

pCO2
A/S atmospheric/ocean surface CO2 pressure ppm

∆T global mean surface (ocean) temperature perturbation K

e CO2 emissions GtC/yr

fA net flux to atmosphere flux GtC/yr

fO air-sea C flux GtC/yr

fdeep Flux mixed layer to deep GtC/yr

fNPP NPP GtC/yr

fdecay decay of terrestrial biomass C GtC/yr

fHO air-sea heat flux PetaW
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Table 2. Parameter definitions

Parameter Meaning Value

Hmix depth of mixed ocean surface layer 50-75a m

AO Ocean surface area 3.62 · 1014m2

aO Ocean fraction of earth surface 0.71

ε Atmospheric concentration per mass of C 2.123 ppm/GtC

% density of ocean water 1028 kg/m3

cp heat capacity of water 4000 J/kg/K

cs mixed layer heat capacity cp %HmixAO

kg gas exchange coefficient 1/(9.06 yr·AO)

Mµmol micromol mass of DIC 12.0107 · 10−6 g

RF2× RF per doubling of atm. CO2 3.708 Wm−2

aRange for included ocean components
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Table 3. IRF substitute model components currently implemented in BernSCM, and the corresponding implemented dependencies on atmo-

spheric CO2 and SAT (references for the parametrisations used are given in the footnotes).

Ocean substitute model Ocean C dependent on:

HILDA Joos (1992)

Princeton GCM Sarmiento et al. (1992)

Bern2.5D Stocker et al. (1992)

}
CO2

a, SATb

Land substitute model Land C dependent on:

4box Siegenthaler and Joos (1992) CO2
c

HRBM Meyer et al. (1999) CO2, SATd

aJoos and Bruno (1996)
bTakahashi et al. (1993)
cEnting et al. (1994); Schimel et al. (1996)
dMeyer et al. (1999)
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Table 4. C4MIP sensitivity parameters. The BernSCM range covers the carbon cycle settings as discussed in section 3, and different combi-

nations of model components (HILDA-HRBM, HILDA-4box, Princeton-HRBM); the C4MIP range covers all participating models.

α βL βO γL γO g

Unit 10−3 K
ppm

GtC
ppm

GtC
ppm

GtC
K

GtC
K

10−2

BernSCM

Standard 4.4 0.75 1.2 -46 -31 8.3

Range 4.1–4.6 0–0.75 1.0–1.2 -46–0 -31–0 0–8.4

C4MIP ensemble

Average 6.1 1.35 1.13 -79 -30 15

Range 3.8–8.2 0.2–2.8 0.8–1.6 -177– -20 -67– -14 4–31
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Table A1. Performance and accuracy for time steps 1–10 yr relative to a reference with a time step of 0.1 yr. The reference simulation is

solved explicitly, otherwise an implicit solution was used. The average execution time of the time integration loop is given as a fraction of

the explicit case. For atmospheric CO2 and SAT, the root mean square difference to the explicite case, divided by the value range over the

simulation is given. All values are for the C4MIP A2 scenario (years 1700 – 2100), using the HILDA ocean component and the HRBM land

component with standard temperature and carbon cycle sensitivities (coupled).

∆t 1yr 10yr

discretization piecewise const. piecewise lin.

execution time 15% 2 %

CO2 RMS/range 0.31‰ 0.45‰

SAT RMS/range 0.52‰ 0.53‰
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